Non-conforming Galerkin finite element methods for local absorbing boundary conditions of higher order
نویسندگان
چکیده
A new non-conforming finite element discretization methodology for second order elliptic partial differential equations involving higher order local absorbing boundary conditions in 2D and 3D is proposed. The novelty of the approach lies in the application of C-continuous finite element spaces, which is the standard discretization of second order operators, to the discretization of boundary differential operators of order four and higher. For each of these boundary operators, additional terms appear on the boundary nodes in 2D and on the boundary edges in 3D, similarly to interior penalty discontinuous Galerkin methods, which leads to a stable and consistent formulation. In this way, no auxiliary variables on the boundary have to be introduced and trial and test functions of higher smoothness along the boundary are not required. As a consequence, the method leads to lower computational costs for discretizations with higher order elements and is easily integrated in high-order finite element libraries. A priori h-convergence error estimates show that the method does not reduce the order of convergence compared to usual Dirichlet, Neumann or Robin boundary conditions if the polynomial degree on the boundary is increased simultaneously. A series of numerical experiments illustrates the utility of the method and validates the theoretical convergence results.
منابع مشابه
Non-conforming Galerkin finite element method for symmetric local absorbing boundary conditions
We propose a new solution methodology to incorporate symmetric local absorbing boundary conditions involving higher tangential derivatives into a finite element method for solving the 2D Helmholtz equations. The main feature of the method is that it does not requires the introduction of auxiliary variable nor the use of basis functions of higher regularity on the artificial boundary. The origin...
متن کاملCoupling Nonlinear Element Free Galerkin and Linear Galerkin Finite Volume Solver for 2D Modeling of Local Plasticity in Structural Material
This paper introduces a computational strategy to collaboratively develop the Galerkin Finite Volume Method (GFVM) as one of the most straightforward and efficient explicit numerical methods to solve structural problems encountering material nonlinearity in a small limited area, while the remainder of the domain represents a linear elastic behavior. In this regard, the Element Free Galerkin met...
متن کاملAdaptive Discontinuous Galerkin Methods for Fourth Order Problems
This work is concerned with the derivation of adaptive methods for discontinuous Galerkin approximations of linear fourth order elliptic and parabolic partial differential equations. Adaptive methods are usually based on a posteriori error estimates. To this end, a new residual-based a posteriori error estimator for discontinuous Galerkin approximations to the biharmonic equation with essential...
متن کاملModified Fixed Grid Finite Element Method in the Analysis of 2D Linear Elastic Problems
In this paper, a modification on the fixed grid finite element method is presented and used in the solution of 2D linear elastic problems. This method uses non-boundary-fitted meshes for the numerical solution of partial differential equations. Special techniques are required to apply boundary conditions on the intersection of domain boundaries and non-boundary-fitted elements. Hence, a new met...
متن کاملA Priori Estimates for Mixed Finite Element Approximations of Second Order Hyperbolic Equations with Absorbing Boundary Conditions
A priori estimates for mixed nite element methods for the wave equations, 6] T. Dupont, L 2-estimates for Galerkin methods for second order hyperbolic equations, SIAM J.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Computers & Mathematics with Applications
دوره 70 شماره
صفحات -
تاریخ انتشار 2015